The part of "A.14: Optimization" that is about a function with one variable

<u>maximum & minimum</u> Saying that a function y=f(x) achieves a **maximum** at a point x^* in its domain <u>means</u> $f(x^*) \ge f(x)$ for all x in its domain.

Saying that a function y=f(x) achieves a **minimum** at a point x^* in its domain <u>means</u> $f(x^*) \le f(x)$ for all x in its domain.

Consider a smooth function y=f(x) whose domain is a closed interval, [a, b].

When *f* achieves a maximum or a minimum at a point x^* in the interior of [a, b], the corresponding tangent line is horizontal [in other words, in the graph for *f*, the function's curve is flat at $(x^*, f(x^*))$]. So the slope of the function is zero.

As a consequence:

Let x^* be a point in the interior of [a, b]. If f achieves a maximum at x^* , then $f'(x^*) = 0$.

Hence, if we want to find a point in the interior of [a, b] where *f* achieves a maximum or a minimum, it is helpful to start by finding where the slope of the function is zero (that is, where the first derivative is zero).

(Note: $f'(x^*) = 0$ is commonly called the "firstorder condition" for a maximum or a minimum.) Looking at this observation in a different way: The points in the interior of [a, b] where the first derivative does <u>not</u> equal zero can be eliminated from consideration (since they are points where maxima or minima couldn't be achieved). The second derivative can also be helpful, since: 1) When *f* achieves a maximum at a point x^* in the interior of [a, b], the second derivative at x^* has to satisfy $f''(x^*) \le 0$;

2) When *f* achieves a maximum at a point x^* in the interior of [a, b], the second derivative at x^* has to satisfy $f''(x^*) \ge 0$.

(Note: The first inequality is called the "secondorder condition" for a maximum; the second inequality is commonly called the "second-order condition" for a minimum) Looking at this observation in a different way: 1) If we want to find a point where *f* achieves a maximum, any point x^* in the interior of [a, b] where $f'(x^*) = 0$ and $f''(x^*) > 0$ can be eliminated from consideration (since it is a point where a maximum couldn't be achieved); 2) If we want to find a point where *f* achieves a minimum, any point in the interior of [a, b] where $f'(x^*) = 0$ and $f''(x^*) < 0$ can be eliminated from consideration (since it is a point where a minimum couldn't be achieved).

The material that follows states some additional results about optimization that involve second derivatives.

local maximum & local minimum

Saying that a function y=f(x) achieves a local **maximum** at a point x^* in its domain <u>means</u> there exists an open interval (c, d) such that $f(x^*) \ge f(x)$ for all x contained in the intersection of (c, d) and the domain of f.

Saying that a function y=f(x) achieves a local **minimum** at a point x^* in its domain <u>means</u> there exists an open interval (c, d) such that $f(x^*) \le f(x)$ for all x contained in the intersection of (c, d) and the domain of f.

Once again, consider a smooth function y=f(x)whose domain is a closed interval, [a, b].

When the "first-order condition" is satisfied at a point in the interior of [a, b], the second derivative can sometimes tell us that we have found a local maximum or a local minimum: 1) if $f'(x^*) = 0$ and $f''(x^*) < 0$, then x^* is a local maximum; 2) if $f'(x^*) = 0$ and $f''(x^*) > 0$, then x^* is a local minimum.

Suppose $f''(x) \le 0$ for all x in its domain. Let x^* be a point in the interior of [a, b]. *f* achieves a maximum at x^* if and only if $f'(x^*) = 0$.

Suppose $f''(x) \ge 0$ for all x in its domain. Let x^* be a point in the interior of [a, b]. *f* achieves a minimum at x^* if and only if $f'(x^*) = 0$.

If f''(x) < 0 for all x in its domain, then there is a unique point in the domain where f achieves a maximum.

If f''(x) > 0 for all x in its domain, then there is a unique point in the domain where f achieves a minimum.